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Abstract

Heat diffusion in stratified materials with the layers running parallel to the main heat flux direction is analyzed with

special emphasis on the temperature field near the boundaries. In a previous work, a semi-analytical general solution

was proposed as an extension of the thermal quadrupole method for heat conduction in heterogeneous media. In this

paper, the steady solution is separated into an homogenized transfer in series with a constriction term, and a conductive

boundary layer is defined. The same decomposition method is implemented for the semi-infinite transient case, and

some simplified models are obtained from asymptotic expansions. For long times, the transient averaged signal is found

to be superposed to the steady constriction matrix effect. The main application is to better envision experimental

temperature field analysis for thermal non-destructive evaluation methods.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The thermophysical characterization of heteroge-

neous media is a quite difficult problem, due to the

multiple spatial scales and characteristic times involved

in the heat transfer process, as well as the difficulty to

describe the microstructure. Two main approaches are

commonly used, as the temperature measurements and

processing can be implemented either at the macroscopic

level or from the local scale. The local methods consist

of heating the sample and measuring the thermal re-

sponse on a microscopic domain smaller than the spatial

characteristic lengths of the components, assuming that

the investigated domain is homogeneous at the micro-

scopic scale [1,2]. On the other hand, the classical and

widespread transient methods designed for homoge-

neous materials, such as flash [3] and hot wire [4]

methods, can apply at the macroscopic scale for hetero-
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geneous media, but the corresponding macroscopic

effective properties must be carefully defined, because

their existence and definition strongly depend on the

validity of the local thermal equilibrium assumptions.

The homogenization [5] and volume averaging

methods [6] yield an in-depth phenomenological analysis

allowing both to validate the local thermal equilibrium

assumption and specify the relationships between the

microstructure, the components properties and the cor-

responding macroscopic parameters. Quintard and

Whitaker [7] achieved a quite general volume averaging

approach for the analysis of transient diffusion in two-

phase systems, where the generalized volume average is

defined from a convolution product with a smooth

weighting function. Glatzmaier and Ramirez [8] used a

two-equation model to interpret measurements obtained

on two-phase samples by the hot wire method, deducing

the two effective thermal conductivities and the exchange

coefficient. Quintard and Whitaker [7], since they in-

tended to validate their method with the experimental

data from [8], showed how these results yield an error

due to the fact that the coupled fluxed related to the

non-diagonal terms of the macroscopic conductivity
ed.
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Nomenclature

a thermal diffusivity

A cross-section

b thermal effusivity

A, B, C, D generalized quadrupole matrices

e thickness

k thermal conductivity

K thermal conductivity diagonal matrix xDz
L length

Mc constriction matrix

M== matrix relative to heat transfer versus z
N nodes number

P eigenvectors matrix

Rc thermal constriction resistance

R�
a analytical constriction resistance for the

average medium

s Laplace variable

T temperature

T average temperature versus z
Tx temperature vector at x location

U averaging matrix

Z generalized thermal impedance

Greek symbols

d conductive boundary layer thickness

Dz space step diagonal matrix

U heat flux vector

U total heat flux in the x-direction
W Laplace heat flux vector

u heat flux density

h Laplace temperature

qc volumetric heat capacity

X diagonal eigenvalues matrix

Subscripts

a, b relative to material a or b
1, 2 relative to medium 1 or 2

Superscripts

* relative to averaged properties

+ relative to a reduced matrix without the zero

eigenvalue

–– averaged variable versus z-direction
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tensor were neglected. From thermal diffusivity mea-

surements in a periodic two-layer slab, Truong and

Zinmeister [9] suggest that an equivalent homogeneous

medium approach is not acceptable when the heat flux is

parallel to the layers. A two-equation model is generally

needed at the macroscopic scale, because local thermal

equilibrium is not fulfilled, especially when the thermal

properties of the two constituents differ widely, or when

fast transient states are observed.

Although the ‘‘change of scale’’ methods provide a

consistent formalism for the implementation of one and

two-equation models, they experience important diffi-

culties to specify the boundary conditions at the mac-

roscopic scale [10], and no general formulation seems to

be available [11]. Sahraoui and Kaviani [12] introduce a

variable effective conductivity near the boundaries of the

macroscopic domain. Batsale et al. [13] propose to solve

the local problem in the vicinity of boundary, and then

couple the corresponding solution to the macroscopic

model in the bulk body. The spatial domain where the

local model applies is envisioned as a conductive

boundary layer. This problem is quite important for the

thermal characterization methods, which mostly mea-

sure the temperature field at the boundary of the sample.

However, such boundary layer is difficult to define, since

no systematic approach seems to be available to the

authors knowledge.

For homogeneous media, the concept of constriction

resistance is widely used in order to give a suitable
representation of the two or three-dimensional distor-

tion effects in a globally one-dimensional problem. The

thermal constriction resistance Rc is commonly defined,

in steady state, for a finite slab of total cross-section At

and thickness L, with adiabatic lateral walls, as

T A0
ð0Þ � T At

ðLÞ ¼ L
kAt

�
þ Rc

�
U ð1Þ

where T A0
ð0Þ is the average temperature over a reduced

area A0 crossed by the heat flux U and T At
ðLÞ is the

average temperature over At. On the right side of Eq. (1),

the first term represents the one-dimensional thermal

resistance, that is the solution obtained if the heat flux

applies over the total cross-section At, while the con-

striction term contains the information relative to the

deviation from the one-dimensional case.

Many solutions are available for various geometries

in order to calculate this constriction resistance for

homogeneous materials: for the half space [14,15], coni-

cal asperities [16], finite flux tube [17], or sliding solids

[18]. Few works are published about the constriction

resistance in heterogeneous media. Negus et al. [19] study

the case of a layer coated on a semi-infinite material, with

the heat flux perpendicular to the layers. Dryden et al.

[20] evaluate the effect of cracks on the thermal resistance

of fiber composites, and define a constriction resistance

factor that accounts for the effects of both inhomogeneity

and geometry. Their analytical solution method is used

further in Section 4 for validation.



x

k(z)

0

e

L

T0
 (z)

given Φ0 (z) ΦL (z)

TL(z) = 0

= 0
∂z
∂T

O. Fudym et al. / International Journal of Heat and Mass Transfer 47 (2004) 2437–2447 2439
For transient state, Degiovanni [21] and Degiovanni

et al. [22] proposed a simplified model based on integral

transforms and asymptotic expansions: the one-dimen-

sional short times thermal impedance is in parallel with

the steady state constriction resistance. Some extensions

of the flash method designed in order to measure the

thermal diffusivity of composite materials with oriented

reinforcement were numerically studied by Balageas

[23].

The main purpose of this paper is to study heat dif-

fusion in stratified materials with the layers running

parallel to the main heat flux direction. Special emphasis

is laid on the thermal behavior near the boundaries, that

is in the domain where local thermal equilibrium is not

achieved.

This problem is fundamental for the thermal char-

acterization methods, since a sensor is to be used on the

boundary of the heterogeneous sample. The global

objective of this work is to obtain some convenient

representations of the transfer matrices between the heat

flux and temperature fields at the boundary of a longi-

tudinally stratified medium, in order to implement in-

verse methods for the cartography of thermophysical

properties in heterogeneous media.

The constriction effects near the boundary seem to

represent an adequate indicator to quantify the devia-

tion from the homogeneous solution. Thus, the thermal

constriction resistance concept is extended here to the

multilayered media case.

In next section, the guidelines of the semi-analytical

quadrupole approach are given, and the solution of the

general problem is pointed out. Then, the solution is

split out into two components, the constriction matrix is

defined, as well as the conductive boundary layer. In

Section 4, the method is validated with an analytical

solution in the two-layered slab case, the constriction

matrix structure is analyzed and various results are

presented. Section 5 is devoted to the extension of this

approach to transient state in a semi-infinite medium.
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Fig. 1. (a) Two-dimensional steady state problem; (b) Semi-

gridding approach.
2. The semi-analytical quadrupole approach

The basic thermal quadrupole formalism is an effi-

cient method for multidimensional linear heat conduc-

tion modelling and calculation, when involved in

multilayer systems [24,25]. For transient conduction in

an homogeneous material, a linear intrinsic transfer

matrix is relating the input and output temperatures and

heat fluxes using some convenient integral transforms.

The main advantages of the quadrupole formalism is to

make the representation of multilayered systems easy––

when the heat flux direction is perpendicular to the

layers––by multiplying the corresponding quadrupole

matrices, and to avoid gridding the whole domain, as the

state variables and fluxes are only calculated on the
boundaries. This is an important point when a

straightforward relationship between some boundary

temperature and heat flux is needed, for instance when

dealing with experimental data processing and inverse

problems. In a previous work, a general extension of this

approach was implemented for heterogeneous media

with one-dimensional variation of thermal properties

[26], and a semi-numerical general solution was pro-

posed for transient heat transfer in finite or semi-infinite

media in both axial and radial coordinate systems, based

on a semi-gridding approach. The relationships between

the input and output [temperature–heat flux] vectors

were written in a matrix form, and some functions

of matrix were defined. Such cases are very important

for applications to the development of thermal non-

destructive evaluation methods by infrared thermo-

graphy [27] or thermoreflectance measurements [2].

A finite volume grid following the z-direction is ap-

plied to the conductive two-dimensional steady state

problem shown in Fig. 1(a). It yields the representation

depicted in Fig. 1(b), where Tx and Ux are respectively

the temperature and heat flux vectors at location x
corresponding to the N nodes. The general resulting

vectorial equation is

K�1M==Tx �
d2Tx

dx2
¼ 0 ð2Þ

where Tx ¼ ½ T1ðxÞ T2ðxÞ � � � � � � TN ðxÞ �t



M== ¼

H1þ �H1þ 0

�H2� H2� þ H2þ �H2þ
0 �H3� H3� þ H3þ �H3þ 0

� � � � � � � � �
�Hi� Hi� þ Hiþ �Hiþ
� � � � � � � � �

�HN� HN�

2
666666664

3
777777775
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with Hi� ¼ Dzi�1

2ki�1
þ Dzi

2ki

� ��1

and Hiþ ¼ Dzi
2ki

þ Dziþ1

2kiþ1

� ��1

and

K ¼ diagð½ k1Dz1 � � � kNDzN �Þ, where the operator

‘‘diag’’ is used in order to build a diagonal matrix from

the corresponding vector. The matrix M== is representa-

tive of transverse transfer in the z-direction, while K�1 is

the diagonal matrix of lineal thermal resistances versus x.
The heat flux vector is defined as

Ux ¼ �K
dTx

dx
ð3Þ

Eq. (2) can be solved directly by the diagonalization:

K�1M== ¼ PXP�1 ð4Þ

where X is the diagonal matrix of eigenvalues, arranged

in increasing order. A generalized quadrupole is then

written [26] as

T0

U0

� �
¼ A B

C D

� �
TL

UL

� �
ð5Þ

where the generalized quadrupole terms A, B, C and D

are the N � N matrices defined as the functions of

matrices

A ¼ Pcoshð
ffiffiffiffi
X

p
LÞP�1

B ¼ P
sinhð

ffiffiffiffi
X

p
LÞffiffiffiffi

X
p ðKPÞ�1

C ¼ KP
ffiffiffiffi
X

p
sinhð

ffiffiffiffi
X

p
LÞP�1

D ¼ KPcoshð
ffiffiffiffi
X

p
LÞðKPÞ�1

Eq. (5) also applies between any location x in the

heterogeneous slab and x ¼ L. Assuming the boundary

conditions defined in Fig. 1(b), the temperature vector

Tx can be computed as a function of the input heat flux

U0 as

Tx ¼ P sinhð
ffiffiffiffi
X

p
ðL

�
� xÞÞð

ffiffiffiffi
X

p
coshð

ffiffiffiffi
X

p
LÞÞ�1

�

� ðKPÞ�1U0 ð6Þ

Eq. (6) is a compact intrinsic relationship, suitable

for determining the temperature field as a function of the
input heat flux U0. The temperature field computed with

Eq. (6) has been validated in a previous work [26]. It is

shown in next section how this equation can be used to

build a constriction matrix.
3. Conductive boundary layer and constriction resistance

matrix

In this section, the semi-analytical solution given by

Eq. (6) is split into (i) the averaged homogeneous part

and (ii) the part due to heterogeneous properties, con-

sidered as a constriction effect. The conductive boundary

layer concept introduced by Batsale [13] is then better

envisioned and specified. The two lateral boundary

conditions are included in the first and last lines of the

matrix M==. Assuming adiabatic lateral boundary con-

ditions, this matrix has a tridiagonal discrete laplacian

structure, thus zero is a particular eigenvalue of this

matrix. Adiabatic lateral boundary conditions are rele-

vant when studying periodic media. The solution T�
x

corresponding to the zero eigenvalue is determined by

• K�1M==T
�
x ¼ 0 ) T �

x;1 ¼ T �
x;2 ¼ � � � ¼ T �

x;N

• d2T�
x

dx2 ¼ 0 ) T�
x is a linear (vector) function of x.

Thus T�
x is the one-dimensional linear solution cor-

responding to the equivalent parallel homogeneous

medium such as

T�
x ¼

L� x
k�e

½ 1 1 � � � 1 �tU with

k�e ¼
XN
1

kiDzi and U ¼
XN
1

/0;i ð7Þ

where k� is the equivalent parallel thermal conductivity

and U is the total input heat flux.

The diagonal matrix of eigenvalues can be written as

X ¼ 0 0

0 Xþ

� �
ð8Þ

where Xþ is a square matrix of dimension (N � 1),

containing all eigenvalues but zero, arranged in

increasing order. The solution given by Eq. (6) is split

out into
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Tx ¼ ðL� xÞP

1 0 � � � 0½ �
0

� � �
0

2
64

3
75 0

0
BBB@

1
CCCAðKPÞ�1U0

þ P

0 ½ 0 � � � 0 �
0

� � �
0

2
64

3
75 fð

ffiffiffiffiffiffiffi
Xþ

p
; xÞ

0
BBB@

1
CCCAðKPÞ�1U0 ð9Þ

where

fð
ffiffiffiffiffiffiffi
Xþ

p
; xÞ ¼ sinhð

ffiffiffiffiffiffiffi
Xþ

p
ðL� xÞÞð

ffiffiffiffiffiffiffi
Xþ

p
coshð

ffiffiffiffiffiffiffi
Xþ

p
LÞÞ�1

.

The first term in the right part of Eq. (9) is the

homogeneous solution T�
x . It is important to point out

that the zero eigenvalue contribution is equivalent to an

averaging operation, as

P

1 0 � � � 0½ �
0

� � �
0

2
4

3
5 0

0
BB@

1
CCAP�1

¼ 1

k�e

k1Dz1 k2Dz2 � � � kNDzN
k1Dz1 k2Dz2 � � � kNDzN
� � � � � � � � � � � �
k1Dz1 k2Dz2 � � � kNDzN

0
BB@

1
CCA ð10Þ

The second term in the right part of Eq. (9) is rep-

resentative of the two-dimensional transverse con-

striction effects. The function of matrix f is the only

term depending on the space variable x in Eq. (9). The

constriction effects in the medium are obviously negli-

gible when this function is turned to be independent

of x.
Practically, when the medium is long enough, the

function f can be approximated by

f
ffiffiffiffiffiffiffi
Xþ

p
; x

� �
� exp

�
�

ffiffiffiffiffiffiffi
Xþ

p
x
�
=

ffiffiffiffiffiffiffi
Xþ

p
ð11aÞ

and this function tends to zero with increasing x, except
in a finite layer d, such as

x < d ¼ 6ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþð1Þ

p ð11bÞ

d � 6e
p

� 2e ð11cÞ

The approximated value of d given by Eq. (11c) is de-

duced from the fact that, for adiabatic lateral boundary

conditions, the square root of the eigenvalues is quite

close to the eigenvalues bn ¼ np=e of the associated

homogeneous medium eigenvalue problem––see [26] for

more details. The thickness d defines a conductive

boundary layer, where the constriction effects are effec-

tive. Outside of this layer, the temperature field is

homogeneous, and is correctly described by T�
x . It is
important to point out that the conductive layer thick-

ness is defined as a maximum value. In some particular

cases, when the input perturbation or the thermal con-

trast between layers is low, the apparent two-dimen-

sional effect could be located quite near the surface.

Applying Eq. (9) at x ¼ 0 yields

T0 ¼ T�
0 þMcU0 with

Mc ¼ P

0 ½ 0 � � � 0 �
0

� � �
0

2
64

3
75 tanhð

ffiffiffiffiffi
Xþ

p
LÞffiffiffiffiffi

Xþp

0
BBB@

1
CCCAðKPÞ�1

and

T�
0 ¼

L
k�e

½ 1 1 � � � 1 �tU ð12aÞ

The decomposition of the temperature vector given

by Eq. (12a) for the multilayered medium is quite similar

to the previous definition of the constriction resistance

for homogeneous materials––see Eq. (1). The first term

of the right side of Eq. (12a) is the one-dimensional

homogeneous solution corresponding to the zero

eigenvalue contribution. The matrix Mc is a constric-

tion matrix describing the two-dimensional constric-

tion phenomenon that accounts for the effects of both

heterogeneity and geometry. The constriction matrix

Mc represents the transverse coupling effects between

layers.

For a long shaped medium, an asymptotic expansion

can be used for the constriction matrix, such as

lim
L!1

Mc ¼ Mc;1 ¼ P

0 ½ 0 � � � 0 �
0

� � �
0

2
4

3
5 ðXþÞ�1=2

0
BB@

1
CCAðKPÞ�1

ð12bÞ

This expression will be use in Section 5 in order to de-

scribe transient conduction in a semi-infinite medium.

Due to the previous remark about the eigenvalues––see

Eq. (11c), the long shaped medium assumption must be

understood here as L � e.
4. Analysis of the constriction resistance matrix

In this section, some results are validated and ana-

lyzed for the two-layer slab despicted in Fig. 2(a–c), for

various input heat flux boundary conditions.

The temperature field Tx given by Eq. (6) is plotted in

Fig. 3, for the uniform input heat flux shown in Fig.

2(a). The homogeneous part and the constriction term

are clearly apparent in Fig. 3. The conductive layer

thickness is found to be d ¼ 0:19 m––Eq. (11b)––quite

near to d ¼ 0:20 m obtained with the approximated

value––Eq. (11c). This result is quite consistent with the

temperature field as plotted in Fig. 3.
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When the input heat flux is uniform and the space

step Dz is constant, a scalar global constriction resis-

tance can be defined in order to compute a macroscopic

one-dimensional relationship between the heat flux

density u and the temperature. This approach is quite

useful when an average field is to be used, for instance if

d � L. It yields

T ¼ L
k�

uþ Rcu with Rc ¼
1

e
½ 1 1 � � � 1 �

Mc½ 1 1 � � � 1 �t and T ¼ 1

N
½ 1 1 � � � 1 �T0:

ð13Þ

The corresponding average temperature T is indi-

cated in Fig. 3. The average constriction resistance Rc is
plotted in dimensionless form in Fig. 4 as a function of

the relative thermal conductivity ka=k�. The case

ka=k� ¼ 1 is relative to an homogeneous medium, and

consequently Rc is zero. Decreasing values of e=L cor-

respond to a long shaped medium, and Rc tends both to

decrease and become independent of L (the curves are

closer to each other).

If the input heat flux applies on the whole layer a
only (see Fig. 2(b)), the corresponding constriction

resistance is obtained by averaging the temperature be-

tween z ¼ 0 and z ¼ ea. The methodology of solution

proposed by Dryden et al. [20] for the radial case is

adapted here for the axial case, based on a Fourier co-

sine transform applied on the x-coordinate. The result-

ing analytical solution is used in order to validate the
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present semi-analytical approach. It yields the following

analytical solution for the constriction resistance

through the layer a:
Ra ¼
L
k�e

kbeb
kaea

� 2kb
kaLe2a

X1
n¼1

sinhðaneaÞðsinhðanebÞ
a3nðka coshðanebÞ sinhðaneaÞ þ kb coshðaneaÞ sinhðanebÞÞ

� �
with an ¼ ð2n� 1Þp=2L ð14Þ
This analytical solution is compared to the constric-

tion resistance obtained from the constriction matrix

(Eq. (12a)), and plotted in Fig. 5 as a function of the

relative thermal conductivity ka=k� for various location

of the a=b interface. The agreement between the ana-

lytical solution and the semi-analytical solution is quite

good. The relative thermal conductivity ka=k� tends to

unity when the material tends to be homogeneous. This

limiting case yields the constriction resistance due to

geometrical effects only. This means that the remain-

ing part of the curves mostly shows the heterogeneity

effects––that is transverse transfer due to the variation

of the thermal conductivity.

Another situation is helpful to analyze the constric-

tion matrix, when the input heat flux is non-zero only on

a given layer (i), as shown in Fig. 2(c). Applying Eq.

(12a) yields:

Ti ¼
L
k�e

/0;i þMcði; iÞ/0;i ð15aÞ

Since Ti is the average temperature of layer i (with
respect to the control volume), the diagonal termMcði; iÞ
represents the corresponding constriction resistance for

this layer. In order to compare this term with the con-

striction resistance in the equivalent homogeneous

medium k�, with the same geometrical characteristics,

the analytical solution of the problem shown in Fig. 2(c)
*
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Fig. 5. Constriction resistance: two-layer slab subjected to in-

put heat flux on layer a.
is implemented from a Fourier cosine transform applied

on the z-coordinate, and yields the following analytical

constriction resistance:
R�
a ¼

2

k�eDz2
X1
n¼1

tanhðbnLÞ
½sinðbnðei þ DzÞÞ � sinðbneiÞ�

2

b3
n

ð15bÞ

where bn ¼ np=e are the eigenvalues of the associated

boundary value problem.

Eq. (15b) is found to be consistent with the results

given by Laraqi [18], if the velocity is set to zero, and

L � e. The integral transform applies on z and not on x
as for Dryden’s approach.

The local relative constriction effect in the two-layer

slab, as defined in Fig. 2(c), is plotted in Fig. 6 as a

function of the dimensionless thermal conductivity

contrast and the location of the interface between the

layers. As expected, the dimensionless constriction

resistance is found to tend to unity when the thermal

conductivity contrast tend to one, that is when the

medium is homogeneous. When the layer i where the

input heat flux applies is located in the more conductive

phase (ea < ei or ea=e < 0:50, corresponding to the line

with points in Fig. 6), heat transfer is almost one-

dimensional in the conductive layer, the insulating layer

is mostly unperturbated, and the relative constriction

resistance tend to 1: Mcði; iÞ � R�
a. When the layer i is

located in the insulating phase (ea=eP 0:50), the con-

striction effect is strongly increased, except if the med-

ium is quasi-homogeneous (when ka=k� tends to 1).
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Fig. 6. Local constriction resistance: two-layer slab subjected

to heat flux on grid (i) only; kb ¼ 1 Wm�1 K�1; e ¼ 0:1 m;

ei=e ¼ 0:5; L ¼ 0:5 m; N ¼ 20.
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In next section, it is shown how this approach can be

extended to the transient case in order to study the

transient constriction effects at the boundary of a semi-

infinite longitudinally stratified medium.
5. Transient conduction at the boundary of a semi-infinite

stratified medium

Studying transient heat conduction at the boundary

of a semi-infinite longitudinally stratified medium is

relevant for various measurements technics, such as non-

destructive testing by infrared camera, cartography of

thermophysical properties in heterogeneous media or

photoreflectance images treatment, where some conve-

nient transfer functions between the superficial temper-

ature field and heat flux are required, in order to

implement suitable inverse methods.

For transient state, a Laplace transform relative to

time is applied to the vector TxðtÞ as

hxðsÞ ¼
Z 1

0

expð�stÞTxðtÞdt ð16Þ

Eq. (2) is turned into

ðK�1M== þ a�1sÞhx �
d2hx
dx2

¼ 0 ð17aÞ

where the vector hx is the Laplace transform of Tx and a

is the diagonal matrix of the thermal diffusivities:

a ¼ diagð½ a1 � � � aN �Þ. The matrix in Eq. (17a) is di-

agonalized as

ðK�1M== þ a�1sÞ ¼ PLXLP
�1
L ð17bÞ

and the transfer matrix between the Laplace input

temperature and heat flux vectors is found for the semi-

infinite medium as a generalized thermal impedance [26]:

h0 ¼ ZW0 ð18aÞ

where the vectorW0 is the Laplace transform of heat flux

vector U0, and the transfer matrix Z is defined as a

product between a function of matrix and the thermal

conductivity matrix such as

Z ¼ ðK�1M== þ a�1sÞ�1=2
K�1 ¼ PLðXLÞ�1=2

P�1
L K�1

ð18bÞ

Previous considerations about the smallest eigen-

value separation in steady state can be extended to this

transient case through an examination of the function of

matrix defined by Eq. (18b), in order to find some sim-

plified representations of the transfer matrix. Some

asymptotic expansions for short times and long times

can be considered.
5.1. Short times asymptotic expansion

For short times, the square matrix on the left side of

Eq. (17a) can be approximated by the single product

a�1s, the matrix K�1M== vanishes, and the corresponding

heat transfer is one-dimensional for each layer. The

expression ‘‘short times’’ should be understood as ‘‘low

Fourier numbers relative to the corresponding layers

ait=Dz2i ’’. The diagonalization is no more necessary, and

the solution given by Eq. (18) is approximated as

h0;short time ¼
ffiffiffi
a

p
ffiffi
s

p K�1W0 ¼
b�1Dz�1ffiffi

s
p W0 ð19Þ

where b is the diagonal matrix of thermal effusivities

(i ¼ 1� N : bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðqcÞi

p
) and Dz is the space step

diagonal matrix. If a step heat flux is applied, then the

short times temperature response is a linear function of

the square root of time, and the slop of each layer de-

pends on the local thermal effusivity––see Fig. 9. This

result is consistent with the analytical results about

transient constriction in homogeneous media as given by

Degiovanni [21].

5.2. Long times asymptotic expansion: simplified model

The asymptotic expansion for long times corresponds

to the limit when s tend to zero. In that case, the aver-

aging characteristics of the zero eigenvalue and the

previous steady state decomposition, such as Eq. (9),

would suggest that s could be neglected in the diagonal

matrix, except for the term corresponding to the zero

eigenvalue, such as

lim
s!0

Z �
ffiffiffiffiffi
a�

p
s�1=2P

1 0 � � � 0½ �
0
� � �
0

2
4

3
5 0

0
BB@

1
CCAðKPÞ�1

þ P

0 ½ 0 � � � 0 �
0

� � �
0

2
4

3
5 ðXþÞ�1=2

0
BB@

1
CCAðKPÞ�1

ð20aÞ

where a� is the average thermal diffusivity calculated

with the average thermal conductivity and volumetric

heat capacity.

The form of Eq. (20a) means that for long times, a

transient averaged part is superposed to the steady state

constriction matrix effect. This approximation would be

valid if

s
a�

� Xþð1Þ () t � slt ¼
1

a�Xþð1Þ �
e2

a�p2
ð20bÞ

that is when the penetration depth of heat in the

homogenized medium is greater that e=3. Eq. (20b) also
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means that the penetration depth has the same order of

magnitude that the steady conductive boundary layer

defined in Eq. (11b). In that case, Eq. (18a) is turned into

an equivalent transient form of the previous steady state

decomposition given by Eq. (12a), such as

h0;long time � h�0 þMc;1W0 ð21Þ

where Mc;1 is the steady constriction matrix defined in

Eq. (12b),

h�0 ¼
1

b�e
ffiffi
s

p UW0 represents the one dimensional

averaged contribution;

U ¼

1 1 � � � 1

1 1 � � � 1

� � � � � � � � � 1

1 1 1 1

0
BB@

1
CCA is an averaging matrix;

b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�ðqcÞ�

q
is the average thermal effusivity of

the medium;

ðqcÞ�e ¼
XN
1

qciDzi is the average volumetric

heat capacity:

The function of matrix used in Eq. (18b) is neither

additive nor separable, and no exact separated solution

can be deduced from Eq. (18a). The simplified model

proposed by Eq. (21) is only an approximation of the

exact model for long times. Moreover, when the thermal

diffusivity matrix is uniform (each layer has the same

thermal diffusivity a), then the exact solution for long

times matches exactly the simplified model, thus

Za¼cste ¼ K�1M==

�
þ s
a
I
��1=2

K�1 ¼ P

� X
�

þ s
a
I
��1=2

P�1K�1 ð22aÞ

lim
s!0

Za¼cste ¼ P

ffiffiffi
a

p
s�1=2 ½ 0 � � � 0 �
0
� � �
0

2
4

3
5 ðXþÞ�1=2

0
BB@

1
CCAðKPÞ�1

ð22bÞ

Eq. (22b) yields exactly the simplified model given by

Eq. (21). In the general case where the thermal diffusivity

is not uniform in the layers, Eq. (18b) tends asymptot-

ically to Eq. (21) when the thermal diffusivity tends to be

uniform.

For the two nodes model (N ¼ 2), the complete

analytical solution of Eq. (18b) is available, since the

eigenvectors and eigenvalues matrices corresponding to

Eq. (4) can be calculated analitically. The resulting

generalized impedance has the following form
Z2 ¼ P2
s=a� x12s
x21s x22sþ X

� �
P�1

2

� ��1=2
k1e1 0
0 k2e2

� ��1

ð23aÞ

where the non-diagonal terms of the inner matrix are

found to be zero when a1 ¼ a2, P2 is the eigenvectors

matrix and X the non-zero eigenvalue corresponding to

Eq. (4).

It is apparent in Eq. (23a) that the inner matrix has

almost a diagonal structure when s tend to zero. More-

over, the characteristic equation of this inner matrix

shows that its eigenvalues, with a first order approxi-

mation in the Laplace variable s, are s=a� and X, thus

lim
s!0

Z2 � P2

ffiffiffiffiffi
a�

p
s�1=2 0

0 1=
ffiffiffiffi
X

p
� �

ðKP2Þ�1 ð23bÞ

and the validity of the resulting approximation with the

simplified model corresponding to Eq. (21) is demon-

strated for the two nodes case. When the thermal dif-

fusivity profile differ widely, a longer time must be

reached for the simplified model to be valid.

Anyway, the behavior of the temperature field for

long times can be computed and investigated systemat-

ically from the semi-analytical model given by Eqs. (18),

and then be compared with the simplified model corre-

sponding to Eq. (21). A numerical Laplace transform

inversion is performed, using a Gaver–Stehfest algo-

rithm [28]. For all the cases investigated, the approxi-

mation of Eq. (21) is found to be acceptable, as shown

on Fig. 7, where the long time temperature profiles ob-

tained from both models for the two-layer slab of Fig.

2(a) are plotted as a function of z for various thermal

diffusivity ratio, for an instant corresponding to ten
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times the characteristic time given by Eq. (20b), where

slt ¼ 140 s.

The long times input temperature vector T0 is com-

puted from the semi-analytical model corresponding to

Eqs. (18) and plotted on Fig. 8 as a function of the

square root of time, for a two-layer semi-infinite slab

and a uniform input step heat flux, such as Fig. 2(a). For

homogeneous materials, this case is illustrative of the

hot film method, designed in order to measure the

thermal effusivity of homogeneous semi-infinite materi-

als [29]. For long times, the curves become parallel to the

average solution. As expected from Eq. (21), the general

solution is composed of two contributions: the transient

average term is added to the steady constriction matrix
effect. The transient homogeneous term is a linear

function of
ffiffi
t

p
, and the slope is found to be the inverse

of the average thermal effusivity. The results are con-

sistent with the calculated characteristic time slt.
The same case is presented in Fig. 9, for a larger time

domain. It is apparent from this logarithmic plot that

both short and long times correspond to some linear

functions of the square root of time, since the slop is 1/2.

For short times, the two curves correspond to the ther-

mal effusivities of both layers, as predicted by Eq. (19).

The characteristic time for short times expansion, given

by the Fourier numbers relative to the corresponding

layers is in this case about three seconds. For long times,

the curves exhibit the dependance on
ffiffi
t

p
of the one-

dimensional average medium.
6. Conclusions

Heat conduction at the interface of a stratified het-

erogeneous medium, with insulated lateral walls, can be

split out into an equivalent average one-dimensional

resistance in series with a constriction matrix term. A

conductive boundary layer can then be defined, where

two-dimensional effects occur, and the thickness of this

layer can be evaluated. For transient heat conduction in

a semi-infinite stratified medium, the well known results

about the one-dimensional behavior for short times

are extended to the long times case through an asymp-

totic expansion study. A transient averaged signal

corresponding to the equivalent homogeneous medium

is found to be superposed to the steady constriction

matrix contribution. The governing parameter of such

approximation is thermal diffusivity. When the thermal

diffusivity profile differ widely, a longer time must be

reached for this approximation to be valid.

These results could be quite useful for the imple-

mentation of inverse methods for thermal properties

measurement technics such as thermoreflectance, flash

or hot probe methods, when applied to heterogeneous

media with one-dimensional varying properties. This

new approach could be implemented in a radial coor-

dinate system and in a three-dimensional form, in order

to be applied to fibrous materials. The semi-analytical

solutions proposed in this paper contribute to better

envision the problem of including the boundary condi-

tions effect in the homogenization methods.
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